Comments by Rafael Repullo on

Bank Competition and Financial Stability: A General Equilibrium Exposition

Gianni De Nicolò and Marcella Lucchetta

Conference on the Banking Sector and the State

Munich, 14 November 2012

Purpose of paper

- Reexamine trade-off between competition and financial stability
- What is new?
 - \rightarrow Moral hazard at the firm <u>and</u> at the bank level
 - \rightarrow Possible increasing returns to scale in intermediation
 - \rightarrow General equilibrium effects

Structure of paper

- Basic model
 - \rightarrow Investors lend to banks
 - \rightarrow Banks invest in projects
- Extended model
 - \rightarrow Investors lend to banks
 - \rightarrow Banks lend to firms
 - \rightarrow Firms invest in projects

Main results

• Basic model with constant returns (CR) in intermediation

 \rightarrow Imperfect competition is optimal

• Basic model with increasing returns (IR) in intermediation

 \rightarrow Perfect competition is optimal

• Extended model with CR or relatively inefficient intermediation

 \rightarrow Imperfect competition is optimal

• Extended model with IR or relatively efficient intermediation

 \rightarrow Perfect competition is optimal

Outline

- Overview of literature
- Understanding the basic model
 - \rightarrow What happens in partial equilibrium?
 - \rightarrow What changes when we go to general equilibrium?
 - \rightarrow What is the role of bank capital?
- A few comments on the extended model
- Concluding remarks

Part 1

Overview of the literature

The traditional (charter value) view

"The legislative reforms adopted in most countries as a response to the banking and financial crises of the 1930s shared one basic idea which was that, **in order to preserve the stability of the banking and financial industry, competition had to be restrained**."

Tommaso Padoa-Schioppa (2001)

A model of the traditional view (i)

- Single risk-neutral bank
- Bank invests unit in asset with stochastic return

Return =
$$\begin{cases} X, \text{ with probability } p \\ 0, \text{ with probability } 1-p \end{cases}$$

where probability of success p is privately chosen by the bank

• Cost of effort to implement *p*

$$c(p) = \frac{\alpha}{2} p^2$$

• Cost of deposits *R*

A model of the traditional view (ii)

• Bank's problem is

$$\max_{p} \left[p(X-R) - \frac{\alpha}{2} p^2 \right]$$

• Solving the first-order condition gives

$$p(R) = \frac{X - R}{\alpha}$$

A model of the traditional view (iii)

• Effect of higher competition for deposits (higher *R*)

$$\frac{dp}{dR} = -\frac{1}{\alpha} < 0$$

 \rightarrow Lower probability of success (or higher risk)

• Conclusion: Competition is bad for stability

An alternative view

- What if moral hazard problem is at the level of a firm borrowing from a bank?
- In this setup higher competition among banks would lead to
 - \rightarrow Lower loan rates
 - \rightarrow Lower probabilities of loan default
 - \rightarrow Safer loan portfolios
- Conclusion: Competition is good for stability
- Reference: Boyd and De Nicoló (2005)

A critique of the alternative view

• Previous result assumes perfect correlation in loan defaults

 \rightarrow Probability of loan default = Probability of bank failure

- What happens with imperfect correlation?
 - \rightarrow Increased competition reduces loan rates
 - \rightarrow Lower interest payments from non-defaulting loans
 - \rightarrow Lower margin (that provide buffer to cover loan losses)
- Conclusion: Competition has ambiguous effect on stability
- Reference: Martinez-Miera and Repullo (2010)

Part 2

Understanding the basic model

Partial equilibrium model (i)

- Single risk-neutral bank
- Bank invests unit in asset with stochastic return

Return =
$$\begin{cases} X, \text{ with probability } p \\ 0, \text{ with probability } 1-p \end{cases}$$

where probability of success p is privately chosen by the bank

• Cost of effort to implement *p*

$$c(p) = \frac{\alpha}{2} p^2$$

Partial equilibrium model (ii)

• Bank sets deposit rate *R* such that

$$pR = \rho$$

 $\rightarrow \rho$ is the required expected return of uninsured depositors

 \rightarrow Proxy for the degree of competition in deposit market

• Endogenous variables

 \rightarrow Probability of success *p* and deposit rate *R*

• Exogenous variables

 \rightarrow Cost of effort parameter α and expected return ρ

Optimal contract

• Optimal contract

$$(p^*, R^*) = \arg \max_{(p,R)} \left[p(X-R) - \frac{\alpha}{2} p^2 \right]$$

 \rightarrow subject to incentive compatibility constraint

$$p^* = \arg\max_p \left[p(X - R^*) - \frac{\alpha}{2} p^2 \right]$$

 \rightarrow and participation constraint

$$p^*R^* = \rho$$

Solving for the optimal contract

• Two equations

 \rightarrow First-order condition for incentive compatibility

$$p^* = \frac{X - R^*}{\alpha}$$

 \rightarrow Participation constraint

$$p^*R^* = \rho$$

• Solution

$$p^* = \frac{1}{2\alpha} \left(X + \sqrt{X^2 - 4\alpha\rho} \right)$$
 and $R^* = \frac{1}{2} \left(X - \sqrt{X^2 - 4\alpha\rho} \right)$

Comparative statics

• Effect of increasing cost of effort parameter α

$$\frac{\partial p^*}{\partial \alpha} < 0 \text{ and } \frac{\partial R^*}{\partial \alpha} > 0$$

 \rightarrow Higher risk and higher cost of deposits

• Effect of increasing competition parameter ρ

$$\frac{\partial p^*}{\partial \rho} < 0 \text{ and } \frac{\partial R^*}{\partial \rho} > 0$$

 \rightarrow Higher risk and higher cost of deposits

 \rightarrow Competition is bad for stability

Optimal contract

Increasing cost of effort

Increasing competition

Bank's payoff

• Bank's payoff

$$\Pi^*(\alpha, \rho) = p^*(X - R^*) - \frac{\alpha}{2}(p^*)^2 = \frac{1}{8\alpha} \left(X + \sqrt{X^2 - 4\alpha\rho} \right)^2$$

• Comparative statics

$$\frac{\partial \Pi^*}{\partial \alpha} < 0 \text{ and } \frac{\partial \Pi^*}{\partial \rho} < 0$$

 \rightarrow Lower payoff with higher costs (of effort or of deposits)

From partial to general equilibrium

• Would general equilibrium effects reverse the result?

 \rightarrow A priori, it seems unlikely

 \rightarrow Could get two opposite effects, with an ambiguous result

General equilibrium model (i)

- Continuum of agents characterized by labor productivity $q \in [0,1]$
- Agents choose to be bankers or workers: in equilibrium
 - $\rightarrow q \in [0, q^*]$ are bankers
 - $\rightarrow q \in [q^*, 1]$ are workers (and then depositors)

[Note: bankers are low productivity workers]

• Supply of deposits

$$Z^* = Z(q^*) = \int_{q^*}^{1} q \, dq$$

General equilibrium model (ii)

• With constant returns to scale in intermediation

 \rightarrow Cost of effort α is a constant

• Equilibrium condition

$$\Pi^*(\alpha,\rho) = q^* \underbrace{p^* R^*}_{\rho} = q^* \rho$$

 \rightarrow Payoff of banker = Payoff of marginal worker

Higher competition increases proportion of workers
 → But this has no effect on banks' choice of risk

General equilibrium model (iii)

- With increasing returns to scale in intermediation
 - \rightarrow Cost of effort to implement *p* is

$$c(p,Z) = \frac{\alpha}{2Z} p^2$$

- \rightarrow Externality in the cost of effort function
- \rightarrow Higher supply of deposits (Z) implies lower cost of effort

[Note: no need for a coalition to form a single bank]

General equilibrium model (iv)

• Equilibrium condition

$$\Pi^{*}(\alpha(Z(q^{*})),\rho) = q^{*} \underbrace{p^{*}R^{*}}_{\rho} = q^{*}\rho$$

 \rightarrow Payoff of banker = Payoff of marginal worker

As before, higher competition increases proportion of workers
→ But now this has an effect on banks' choice of risk

General equilibrium model (v)

• Effects of higher competition $(\Delta \rho)$

 \rightarrow Direct (or partial equilibrium) effect $\Delta \rho \rightarrow \nabla p$

 \rightarrow Indirect (or general equilibrium) effect $\Delta \rho \rightarrow \Delta Z \rightarrow \nabla \alpha \rightarrow \Delta p$

 \rightarrow Competition has ambiguous effect on stability

[Note: result in Proposition 3 may not be robust]

What about bank capital?

• Model assumes that bankers can "create" capital k at the cost

$$c(k) = \frac{\beta}{2}k^2$$

• Bankers' problem is

$$\max_{k} \left[pXk - \frac{\beta}{2}k^2 \right]$$

• Solving the first-order condition gives

$$k = \frac{pX}{\beta}$$

 \rightarrow Optimal choice of capital is linear in p

 \rightarrow Capital does not add anything to the model

Part 3

Comments on the extended model

The extended model (i)

• Extended model features

 \rightarrow Moral hazard for firms: Firms choose p^F

- \rightarrow Moral hazard for banks: Banks choose p^B
- Bank risk is given by

$$1-p=1-(p^F\times p^B)$$

[Note: p^B could be interpreted as monitoring effort]

The extended model (ii)

- Overview of literature has shown
 - \rightarrow Higher competition for loans makes loans safer
 - \rightarrow Higher competition for deposits makes banks riskier
- Competition should have an ambiguous effect on stability

Comments on extended model

- The idea that default risk is determined by firms' risk-taking decision and the banks' monitoring decision seems promising
- Apart from this, model is unnecessarily complicated
 - \rightarrow Sets of bankers-workers and entrepreneurs-workers
 - \rightarrow Firms and banks that "create" capital
 - \rightarrow Both constant and increasing returns
 - \rightarrow Why do we need to have a fixed setup cost for banks?

Concluding remarks

Concluding remarks (i)

• Paper concludes

"Our results suggest that supporting bank profitability (or charter values) with rents... **may be unwarranted**."

• Paper could equally conclude

"Our results suggest that supporting bank profitability (or charter values) with rents... **may be warranted**."

Concluding remarks (ii)

• No need for a coalition of entrepreneurs to form a single firm

 \rightarrow Use externality in entrepreneurs' cost of effort function

• No need for a coalition of bankers to form a single bank

 \rightarrow Use externality in bankers' cost of effort function

• There are better ways of introducing bank capital

 \rightarrow Funds provided by special class of investors

• Model of a single bank lending to a single firm

 \rightarrow Imperfect default correlation would be more interesting

Concluding remarks (iii)

• No need to have a single comprehensive (complicated) model

 \rightarrow Better to understand distinct forces that drive the results

• Extant literature suggests that results are bound to be ambiguous → In the end it is a matter to be elucidated by empirical work